Archive

Posts Tagged ‘resistance’

Electrical resistance of Kundan, Orbit insulated wires

October 3rd, 2017 No comments

When the electrical resistance of the copper cable is high, the possibility of power loss is higher leading to heating and melting of cables.  So, I decided to measure the actual resistance of commercially available electrical cables with three different cross-sectional areas.

1 sq.mm 1.57 Ω @ 30℃
Kundan 1.8 Ω
Orbit 1.8 Ω
2.5 sq.mm 0.628 Ω @ 30℃
Kundan 0.7 Ω
Orbit 0.9 Ω
4 sq.mm 0.392 Ω @ 30℃
Kundan 0.6 Ω
Orbit 0.7 Ω

From the analysis, “Kundan” seems a better choice.

Ref: http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/rstiv.html

Understanding a Fan Motor

August 28th, 2012 4 comments
Have you opened up a fan motor before?  It is a simple brush less A/C induction motor, where the armature remains as the stator.  Look at the exploded image of a typical fan motor. The important parts are C: Ball Bearing, D: Stator, E: Armature/Stator, G: Capacitor, H: Connector. 

Also, look at the other image that shows the cross section of a motor.  You would notice that there are 4 wires coming out the motor.  Two pairs of wire, with one pair as the starting coil and the another pair for the running coil.  In general, all single phases induction motors have two coils (starting coil, running coil).  Using a capacitor, an artificial phase difference is created between the fields created by the starting and running coils.  The phase difference triggers movement of the armature.  When the armature reaches a particular speed, using a centrifugal switch, the connection to the starting coil is disconnected and the entire fans runs with just one coil.

Although there are four terminals, you would notice 3 terminals are emitted out, with the starting and running coils connected back-to-back.  Let’s say S1,S2 are the terminals of starting coil and R1,R2 are the terminals of the running coil.  To get 3 terminals out of the fan motor, S2 and R2 are shorted. 

Now, you just see 3 terminals; how do you find which terminal is starting, which one is ending and which one is shorted?  Easy.  Using a simple multimeter, you can find it out.

Let’s say you see terminals A, B, C. Our aim is to find which one of these are S1, R1, S2R2.  Now, let’s measure the resistance between A-B, call it X.  Likewise measure the resistance B-C as Y and A-C as Z.  If you would notice X < Y < Z, you would also notice that Z = Y+X.  Which mean, A-C is action A-B+B-C, that’s why the resistance was additive, also the terminal B is S2R2.  The challenge now is to find what is A and what is C.   As we’d notice A-B=X < B-C=Y, we can confirm that terminal A is starting coil S1 and terminal C is running coil R1.  The reasoning is that; starting coil resistance will be less than running coil resistance.

Hope, this article helped.

AWG Vs Current Flow Capacity

September 13th, 2011 No comments

This write up is taken from http://www.engineeringtoolbox.com/wire-gauges-d_419.html

The AWG – American Wire Gauge – is used as a standard method of denoting wire diameter, measuring the diameter of the conductor (the bare wire) with the insulation removed. AWG is sometimes also known as Brown and Sharpe (B&S) Wire Gauge.

The AWG table below is for a single, solid, round conductor. Because of the small gaps between the strands in a stranded wire, a stranded wire with the same current-carrying capacity and electrical resistance as a solid wire, always have a slightly larger overall diameter. The higher the number – the thinner the wire. Typical household wiring is AWG number 12 or 14. For telephone wires there are common with AWG 22, 24, or 26.

AWG Diameter
(mm)
Diameter
(in)
Square
(mm2)
Resistance
(ohm/1000m)
40 0.08 . 0.0050 3420
39 0.09 . 0.0064 2700
38 0.10 0.0040 0.0078 2190
37 0.11 0.0045 0.0095 1810
36 0.13 0.005 0.013 1300
35 0.14 0.0056 0.015 1120
34 0.16 0.0063 0.020 844
33 0.18 0.0071 0.026 676
32 0.20 0.008 0.031 547
30 0.25 0.01 0.049 351
28 0.33 0.013 0.08 232.0
27 0.36 0.018 0.096 178
26 0.41 0.016 0.13 137
25 0.45 0.018 0.16 108
24 0.51 0.02 0.20 87.5
22 0.64 0.025 0.33 51.7
20 0.81 0.032 0.50 34.1
18 1.02 0.04 0.82 21.9
16 1.29 0.051 1.3 13.0
14 1.63 0.064 2.0 8.54
13 1.80 0.072 2.6 6.76
12 2.05 0.081 3.3 5.4
10 2.59 0.10 5.26 3.4
8 3.25 0.13 8.30 2.2
6 4.115 0.17 13.30 1.5
4 5.189 0.20 21.15 0.8
2 6.543 0.26 33.62 0.5
1 7.348 0.29 42.41 0.4
0 8.252 0.33 53.49 0.31
00 (2/0) 9.266 0.37 67.43 0.25
000 (3/0) 10.40 0.41 85.01 0.2
0000 (4/0) 11.684 0.46 107.22 0.16

The higher the gauge number, the smaller the diameter, and the thinner the wire.  Because of less electrical resistance a thick wire will carry more current with less voltage drop than a thin wire. For a long distance it may be necessary to increase the wire diameter – reducing the gauge – to limit the voltage drop.

American Wire Gauge (AWG)
Length
(feet)
Current (amps)
5 10 15 20 25 30 40 50 60 70
15 16 12 10 10 8 8 6 6 4 4
20 14 12 10 8 8 6 6 4 4 4
25 14 10 8 8 6 6 4 4 2 2
30 12 10 8 6 6 4 4 2 2 2
40 12 8 6 6 4 4 2 2 1 1/0
50 10 8 6 4 4 2 2 1 1/0 1/0
60 10 6 6 4 2 2 1 1/0 2/0 2/0
70 10 6 4 2 2 2 1/0 2/0 2/0 3/0
80 8 6 4 2 2 1 1/0 2/0 3/0 3/0
90 8 4 4 2 1 1/0 2/0 3/0 3/0 4/0
Standard Wire Gauge (SWG)

SWG inches mm
7/0 0.500 12.700
6/0 0.464 11.786
5/0 0.432 10.973
4/0 0.400 10.160
3/0 0.372 9.449
2/0 0.348 8.839
1/0 0.324 8.236
1 0.300 7.620
2 0.276 7.010
3 0.252 6.401
4 0.232 5.893
5 0.212 5.385
6 0.192 4.877
7 0.176 4.470
8 0.160 4.064
9 0.144 3.658
10 0.128 3.251
11 0.116 2.946
12 0.104 2.642
13 0.092 2.337
14 0.080 2.032
15 0.072 1.829
16 0.064 1.626
17 0.056 1.422
18 0.048 1.219
19 0.040 1.016
20 0.036 0.914
21 0.032 0.813
22 0.028 0.711
23 0.024 0.610
24 0.022 0.559
25 0.020 0.508
26 0.018 0.457
27 0.0164 0.417
28 0.0148 0.376
29 0.0136 0.345
30 0.0124 0.315
31 0.0116 0.295
32 0.0108 0.274
33 0.0100 0.254
34 0.0092 0.234
35 0.0084 0.213
36 0.0076 0.193
37 0.0068 0.173
38 0.006 0.152
39 0.0052 0.132
40 0.0048 0.122
41 0.0044 0.112
42 0.004 0.102
43 0.0036 0.091
44 0.0032 0.081
45 0.0028 0.071
46 0.0024 0.061
47 0.002 0.051
48 0.0016 0.041
49 0.0012 0.030
50 0.001 0.025